题目:Spatial Modeling of Vector-Borne Diseases: Eulerian versus Lagrangian Approaches
摘要:In the past two decades, many epidemic patch models have been proposed to study the effects of spatial heterogeneity and population movement on the spread of infectious diseases in discrete space. These models are mostly based on Eulerian and Lagrangian approaches: the former mimics human commuting behavior (labeling individuals and tracking their position) while the latter mimics human migration. In this talk, we introduce a multi-group Lagrangian patch model for vector-borne diseases. The global dynamics of the model system is shown to be completely governed by the basic reproduction number R0. Multiple biologically meaningful upper and lower bounds on R0 are obtained. In particular, the heterogeneous mixing of hosts and vectors in a homogeneous environment always increases the infection risk. We compare the findings with those of the corresponding Eulerian patch model. Additionally, we give the definition, characterization and application of the strong connectivity of infectious disease networks which could be crucial in analyzing epidemic models with complex structure. This is based on joint works with Linlin Cao, Pauline van den Driessche and Chris Cosner.
时间:2021年9月30日(周四),8:30-10:00
地点: 腾讯会议ID: 243-636-101
主讲人: 高道舟教授(上海师范大学)
主讲人简介:高道舟,上海师范大学数学系教授,博士生导师。2012年5月获得迈阿密大学博士学位。2012/06-2015/11,在加州大学旧金山分校(UCSF)从事博士后研究,2015年入选上海市特聘教授(东方学者)。主要研究领域为数学传染病学、种群生态学和微分方程,在SIAM J Appl Math, J Nonlinear Sci, Proc Amer Math Soc, J Math Biol, Bull Math Biol, Am J Trop Med Hyg, Theor Popul Biol, Sci Rep等期刊发表论文四十多篇,其中斑块传染病模型的系列工作先后三次受到美国工业与应用数学学会(SIAM)的专文介绍,寨卡模型工作被加拿大电视网(CTV)、巴西《环球报》(O Globo)、秘鲁《商报》(El Comercio)、ScienceDaily、果壳网等媒体所报道,并获得学术同行的大量引用。担任SCI期刊Math Biosci Eng编委,曾受邀并获全额资助参加世界卫生组织专家评审会议。目前主持国家自然科学基金和上海市自然科学基金各一项。
欢迎广大师生参加!