题目:Localized analytical matter-wave solutions of generalized Gross-Pitaevskii(GP(p,q)) equation with three kinds of specific external potentials
摘要:We present the generalized Gross–Pitaevskii (GP(p,q)) equation with two kinds of specific space–time modulated potentials, including the generalized Rosen– Morse potential, the combination of harmonic and Gaussian (harmonic–Gaussian) potential. Some analytical bright soliton solutions are derived from the generalized GP(p,q) equation via the complex similarity transformation and the generalized stationary nonlinear Schrödinger (NLS) equation. The soliton solutions can be reduced to Jacobi elliptic and spikon-like solutions by choosing the different parameters, and describe some physically relevant phenomenon. Furthermore, some stabilities of the obtained matter-wave solutions are addressed numerically. We find that some solutions are stable and can be observed over a broad range of parameters through analyzing the effcect of the phase noise on these solutions. The obtained results may give a certain theoretical guiding significance of relative experiments in Bose–Einstein condensates.
时间:2020年11月5日,14:00—15:30
地点:腾讯会议(会议号:845479195)
主讲人:于发军
主讲人简介:于发军,现任教授,博士后,美国数学会评论员。研究方向:可积系统与非线性偏微分方程,孤立子理论,数学机械化。2011年入选辽宁省高校杰出青年学者成长计划,2017年入选辽宁省“百千万人才工程”千层次,2018年入选沈阳市高层次人才“拔尖人才”和辽宁省高等学校创新人才计划。主持和完成国家级科学基金2项,主持和完成省部级课题5项,出版学术著作2部。在高水平的国际期刊《Physical Review E》、《Nonlinear Dynamics》、《Journal of Mathematical Physics》等杂志发表文章100余篇,文章被SCI引用1000余次。