Nonlinear pharmacokinetic models and analytical solutions: a case of sigmoidal Hill elimination

发布者:系统管理员发布时间:2022-12-07浏览次数:687

题目:Nonlinear pharmacokinetic models and analytical solutions: a case of sigmoidal Hill elimination

时间:2022129日,8:20-9:50am(周五)

地点:腾讯会议(759-517-0738),密码:654321

主讲人: 李军副教授(加拿大蒙特利尔大学药学院)

摘要:In this study, we discuss how to develop the closed-form solutions of the pharmacokinetic models with sigmoidal Hill elimination with intravenous bolus administration using our newly discovered transcendent H function. Then, we quantitatively revisit some widely used pharmacokinetic indexes and discuss their concentration-dependent properties and sensitivity to the Hill coefficient. Meanwhile, in establishing the closed-form formulas for multiple repeated dosing regimens, we discuss phase transition properties of steady states in function of the lengths of dosing intervals. Further, our results are exemplified with two real drugs. To conclude, our findings provide new knowledge for nonlinear pharmacokinetics and guidance for rational drug designs.

主讲人简介:李军,本科硕士毕业于武汉大学数学系,加拿大蒙特利尔大学数学系理学博士,药学院博士后,目前是加拿大蒙特利尔大学药学院副教授。主要从事药物动力学、药效动力学、群体药物动力学/药效动力学,系统定量药理学的建模和模拟;在药学医学等主流学术期刊《Journal of pharmacokinetics and pharmacodynamics, CPT: Pharmacometrics&Systems Pharmacology, Journal of Theoretical Biology,》等发表学术论文60多篇,连续收到到加拿大国家自然科学与工程基金(NSERC)和魁北克省自然科学与工程基金(FRQNT)项目资助。  

欢迎广大师生参加!