题目:A new approach on acyclic list coloring
时间:2023年5月15日(周一),18:45-20:30
地点:腾讯会议767-866-272
主讲人: 陈敏(浙江师范大学)
摘要:Let $G=(V, E)$ be a graph. A proper vertex coloring of $G$ is acyclic if $G$ contains no bicolored cycle. Namely, every cycle of $G$ must be colored with at least three colors. $G$ is acyclically $L$-colorable if for a given list assignment $L=\{L(v):v\in V\}$, there exists a proper acyclic coloring $\pi$ of $G$ such that $\pi(v)\in L(v)$ for all $v\in V$. If $G$ is acyclically $L$-colorable for any list assignment with $|L(v)|\geq k$ for all $v\in V$, then $G$ is acyclically $k$-choosable. This concept was introduced by Gr\{u}nbaum in 1973.It is known that for any two integers $i$ and $j$ such that $\{i, j\}\subset \{5,6, 7, 8, 9\}\setminus \{8,9\}$, every planar graph without $\{4,i,j\}$-cycles is acyclically 4-choosable. In this talk, we shall complete the last remaining case by proving that every planar graph without $\{4,8,9\}$-cycles is acyclically 4-choosable.
主讲人简介:陈敏,女,1982年6月生,浙江师范大学教授,博士生导师,现任学校教务处处长,曾任数计学院副院长。现为省高校中青年学科带头人,省高校高层次拔尖人才,中国运筹学会图论组合分会理事、副秘书长,第九届世界华人数学家大会(ICCM 2022)45分钟特邀报告人。主要研究方向为图的染色理论。迄今在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory、Discrete Math.、Discrete Appl. Math. 以及中国科学等国内外学术刊物上发表60余篇SCI期刊学术论文。主持国家自然科学基金3项(面上2项,青年1项),主持浙江省自然科学基金3项(含重点1项),主持留学回国人员科研启动基金1项,现为《Journal of Combinatorics Optimization》国际期刊编委。成果先后获省自然科学学术奖一等奖、省科学技术奖二等奖、省首批“担当作为好支书”、省高校“最受师生喜爱的书记”、省教育系统“事业家庭兼顾型”先进个人、省“最美家庭”、校第二届“砺行”奖教金、校第五届“最美教师”、校“优秀共产党员”,连续三届获校“我心目中的好老师”、六次获校优秀班主任,入选校首批学术名师计划。主持1门省一流线下课程、1门课程思政示范课程,至今已指导研究生20多人,指导研究生发表SCI论文20多篇,16人次被评为研究生国家奖学金、省优秀毕业生、校优秀毕业生、校长特别奖等荣誉。
欢迎广大师生参加!