题目:Some results on the Erdős-Gyárfás problem and the Erdős-Rothschild problem
时间:2023年2月27日(周一),08:30-10:30
地点:腾讯会议506-542-429,无密码
主讲人: 李希赫(中国科学技术大学)
摘要:The Erdős-Gyárfás problem is a generalized Ramsey-type problem, which concerns the minimum number of colors needed for a host graph G to have an edge-coloring such that every copy of H receives at least q colors, where H is a subgraph of G and q is a positive integer. In this talk, we first introduce our work on the Erdős-Gyárfás problem for complete graphs G and H with respect to Gallai-colorings. We will also introduce our work on the Erdős-Gyárfás problem for complete bipartite graphs G and H, as well as the recently developed Color Energy Method.
In addition, we will introduce our work on counting and typical structure problems for rainbow 3-term arithmetic progression-free colorings of integers and groups, which is a rainbow Erdős-Rothschild problem.
This talk is based on joint works with Hajo Broersma and Ligong Wang.
主讲人简介:李希赫,2021年在荷兰University of Twente获得博士学位,现为中国科学技术大学研究助理。主要从事Ramsey理论和极值组合中若干问题的研究,若干成果发表在 《Journal of Graph Theory》、《Electronic Journal of Combinatorics》、《Discrete Mathematics》、《Discrete Applied Mathematics》等权威国际期刊上,这些成果丰富了Ramsey理论的研究成果和方法, 并有助于揭示Ramsey理论与极值图论、结构图论和加性组合学的联系, 具有重要的理论意义。
欢迎广大师生参加!