时间:2023年8月25日,10:30
地点: 1C207
主讲人:任丽,四川大学数学学院教授
摘要:
Let V be a simple vertex algebra of countable dimension, G be a finite automorphism group of V and \sigma be a central element of G. For any finite set S of inequivalent irreducible \sigma-twisted modules such that S is invariant under the action of G, we establish a duality result of Schur-Weyl type for V^G and a semisimple associative algebra A_{\alpha}(G,S) on the sum of irreducible modules in S. In particular, any \sigma-twisted module is a direct sum of finitely many irreducible V^G-modules. We also obtain a quantum Galois correspondence for the action of G on V. This is joint work with Chongying Dong and Chao Yang.
主讲人简介:
主要研究领域为李代数和顶点算子代数,在Adv. Math.、Trans. Amer. Math. Soc.、J. Algebra等著名SCI杂志发表论文多篇。主持国家自然科学基金面上项目和青年项目、国家博士后特别基金等项目。
欢迎广大师生参加!