文理学院学术报告——Orbifold theory and modular extensions

发布者:系统管理员发布时间:2020-09-14浏览次数:42

题目:Orbifold theory and modular extensions

摘要: Orbifold theory studies a vertex operator algebra V under the action of a finite automorphism group G. The main objective is to understand the module category of fixed point vertex operator subalgebra V^G. We show that the module category of V^G can be understood in terms of the third cohomology group of G with coefficients in the unit circle if V is a nice vertex operator algebra. The idea is to establish a connection between the V^G-module category and modular extensions of G-module category. On the other hand, the modular extensions of G-module categories have been classified using the twisted Drinfeld quantum doubles of G in category theory. This talk will explain how to use the results on modular extensions by Drinfeld-Gelaki-Nikshych-Ostrik and Lan-Kong-Wen to study the module category of V^G. This is a joint work with Richard Ng and Li Ren.

时间:2020年9月19日,08:00-10:00

地点:腾讯会议(会议号:865 569 852,密码:202009)

主讲人:董崇英教授(美国加州大学Santa Cruz 分校)

主讲人简介: 董崇英, 美国加州大学Santa Cruz 分校教授。主要从事无穷维李代数和顶点算子代数研究,在顶点算子代数(Vertex operator algebras)、Orbifold理论以及广义月光(Generalized moonshine)等方面的研究做出了令世界数学界交口称赞的工作。 主持多项美国国家科学基金,已在国际数学杂志上发表SCI论文一百多篇,包括国际著名数学杂志《Acta Math.》,《Duke Math. J.》,《Comm. Math. Phys.》,《Adv. Math.》等,在国际同行中具有重要影响,得到包括fields奖获得者Drinfeld、 Zelmanov和Borcherds以及著名数学家如Beilinson和V.Kac等人的重要引用。